If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-12c^2-6c=0
a = -12; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·(-12)·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*-12}=\frac{0}{-24} =0 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*-12}=\frac{12}{-24} =-1/2 $
| n+4÷4n=6÷4 | | 3(−2x+1)=−5(x+1) | | 1x+4=-x-4 | | 5(x3)+2=5x+17 | | 2c-35=3c-46 | | x-(-33)=105 | | 2/7•n=4 | | 16x-6=126 | | 5(x+5)^2-90=0 | | 3t-100=t+14 | | n+11=-1 | | 8y-5y-9=43.53 | | t+34=2t | | x-100=-59 | | 5(2x+3=2(3x-8) | | (5x/3)-2=2x-4 | | 6x-4+2=7(x+1)-11 | | 4t+37=11t+23 | | 5(2x+3=2(3x-8 | | -28.45=m(9.3)-4.1 | | 5(x+5)^2=90 | | 19v-10=5v+32 | | 19v-10=5v+33 | | -28.45=m(9.3)+4.1 | | V+41=8v-99 | | 5x^2+11x-20=0 | | 5(10k+1)+2(2+8k)=0 | | 3u-61=4u-83 | | 2x(x-3)=8x^2-11x | | M=36+n | | 5s+51=34 | | t/3-5=7 |